
m Fermi National Accelerator Laboratory 

FN-504 

Bare Pomeron in Inclusive Processes 

A. K. Likhoded’, N. V. Mokhov+, and 0. P. Yushenko+ 
Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

’ Permanenr address: 
Institute for High Energy Physics 

Serpukhov, U. S. S. R. 

January lo,1989 

% Operated by Universities Research Association Inc. under contract with the United States Department of Energy 



Bare Pomeron in Inclusive Processes 

A.K.Likhoded, N.V.Mokhov and O.P.Yushenko 
Fermi National Accelerator Laboratory 

P.O. Box 500, Batavia, Illinois 

Permanent address: 

Institute for High Energy Physics 

Serpukhov, U.S.S.R 

January 10, 1989 

1 Introduction 

It is well known that the phenomenon of increasing total cross sections 
has an explanation in the framework of Regge theory with the supercriti- 
cal Pomeron[l]. The amplitude for elastic hadron-hadron scattering is given 
in the theory by the sum of reggeon diagrams. The first term of this eikonal 
series corresponds to the “bare Pomeron” contribution 

Aza(s,t) = (i-cot - 44 4%#), 
2 Ia 

where a(t) = 1 + A + a’t. This amplitude is used usually as an input to the 
eikonal approach, which gives a correct unitary description. 

Theoretical support for A > 0 lies in perturbative QCD calculations. 
The perturbative QCD Pomeron was found[2] to be a series of poles in the 
complex angular momentum plane at 

lr:j<l+A (2) 

with the upper limit A < 4ln2a,(t)/r [3]. For a. = 0.2 - 0.25 this gives a 
rather large value A = 0.55 - 0.65. 
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Another way to get an indication of the value of A is the QCD calculation 
of the deep inelastic cross section[4]. The small-z behavior of parton distri- 
bution functions has an easy explanation in Regge theory. The limit Zbj + 0 
is the exact Regge asymptotic behavior for the amplitude of elastic Compton 
scattering. In the framework of the leading logarithm approximation 

f - iexp(jz). 

One can find an effective power law defined by A = alnf/a(l/z) - 1. This 
gives A = 0.23 for Q2 = 16GeVZ and A = 0.5 for Qa = 400GeV'. Unfor- 
tunately, because of the absence of data on deep inelastic scattering (DIS) 
in the small-z region (z < 0.05) one can not extract the bare Pomeron 
parameters from there. 

The analysis of data on the total cross section performed by the various 
groups gives quite different values of A. In the earlier papers of the Orsay[S] 
and ITEP[6] groups the value A - 0.13 has been found. The two-pole 
approximation for the bare Pomeron gives the interval 0.09 5 A 5 0.3 [7], as 
providing a pretty good description of rtot. The value A = 0.3 agrees with 
cosmic ray data. Two recent works using an analysis of utot and of Re/Im 
give very different values A = 0.56 [8] and A = 0.11 [9]. 

2 Leading Pomeron singularity form 

Another way to determine the bare Pomeron parameters is to fit the data 
on inclusive particle production in the central region. The main argument 
in support of such a method is the AGK cancellation of cut contributions in 
the central region[lO]. In that region one has deal with the first term only 
- the double bare Pomeron diagram (Fig.1). In the high energy limit 

Such a behavior is true only if the three-Pomeron vertex ~ppp is small. The 
present data on diffraction dissociation give ~ppp - 0.1 and below its con- 
tribution will be neglected. 
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Formula (4) describes the leading term only and does not take into 
account the contribution of secondary trajectories. At moderate energies 
q’% < IOOGeV the rise of particle density~in the central region is connected 
with the vanishing of the secondary reggeons in the Mueller-Kanchely dia- 
grams[ll,l2] (see Fig.1). At the highest energies the secondary contributions 
are negligible and the rise can be connected with the leading Pomeron sin- 
gularity only. 

A preliminary analysis[l3] of the data on da/dy at y = 0 shows power 
dependence of the cross section with the exponent A N 0.17. It was shown 
there that at low and moderate energies the non-asymptotic contribution of 
secondary reggeons exists and that it is very important. However, the values 
of the parameters (PP, RP and RR) which have been found in[l3] can not 
describe the inclusive spectra at non-zero values of rapidity. This arises 
from the positivity of the BP-parameter which produces the y-behavior of 
inclusive spectra. On the other hand it is known that with ap = 1 and a 
negative RP-parameter one can get a good description of the data in wide 
energy and rapidity intervals[l4]. 

One can solve the difficulty by introducing a more complex form for the 
leading Pomeron singularity. There is a theoretical basis for such complex- 
ity[2]: the series of poles at a > 1. So, the simplest assumption is that 
the leading Pomeron singularity can be considered as a couple of poles at 
a~ = 1 + A and ap. Such an assumption has been used already for the total 
cross section analysis[‘l]. 

We re-fitted below the total cross sections and elastic slopes at small 
t to fix the coupling constants of F,P and R with hadrons. Substituting 
these constants into the double-reggeon diagram (DRD) approximation for 
the inclusive cross section one can get a wonderful description of the various 
data. 

3 Double-reggeon representation 

It is known that the generalized optical theorem[ll,l2] and factorization of 
leading singularities give an expression for the inclusive cross section of the 
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reaction a + b + cX in the central region 

E 

where i,j = 1,3; t = (p. - pC)2 N -&Q.-V; u = (ps - pc)” N -JSm&; 

8 = (pa + pb)? =w = &$G$; y = ln((p, + E,)/rn~). 
Here, the dependence on the transverse mass is absorbed into the constants 
fij. Integrating over pi one finds 

The summation in (6) is over three reggeon singularities: a froissaron with 
A > 0, a Pomeron with A = 0 and a reggeon with a = 0.5. The constants are 
given by fii = GiA;jGj, where Gi is a coupling constant for the singularity 
of type i with a proton or antiproton (for secondary reggeons these constants 
are not identical), Aij is the central vertex in Fig.1. 

Let us note that simultaneous analysis of data on the reactions p + p -+ 
c-X and p + p t c-X, where c- is a negatively charged particle, in a 
wide energy interval is consistent with the above factorization because of 
the presence of ten different DRD f or ten constants: GF, Gp, GRP, GRP, 

AFF, AFP, AFR, APP, APR, &R. 

4 Coupling constants 

It was already mentioned above that the connection with the elastic ampli- 
tude imposes some limitations on the constants GF and Gp because these 
constants control the asymptotic behavior of the total cross section. So, it 
may be convenient to fix these parameters from analysis of the elastic am- 
plitude and to determine others from inclusive spectra. 

We use the eikonal representation for the elastic amplitude 

A(a,t) = i/(1 - e’“)Jr,(bJ=t)bdb, 

where fi is the eikonal function consisting of three components Cl = OF + 
flp + 0~. Each part is a Fourier transform in b-space of the usual pole 
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expression 

Ai(s, t) = s -1G~(Qei*/2)l+A;+Ultebit 
(8) 

The simultaneous fit of data on the total cross sections and elastic slopes (b;) 
for pp- and pp- scatterings allows the determination of the parameters of 
interest. We use the following data a&pp) [15-291, ut&p) [15,16,19,20,30- 
331, b(pp) [19,34-421 and b(pp) [19,28,33,39,42-471. The resulting parameters 
G; in mb’/‘; b; and (xi in (GeV/c)-’ are given in Table 1. The corresponding 
descriptions of utot and the elastic slopes are agreed well with data. The 
froissaron intercept (1 + A) used with A = 0.17 was found in [13]. 

5 Inclusive cross section 

With the parameters of Table 1 one can fit the inclusive spectra in the central 
region. The data on the rapidity distributions at y = 0 are extracted from 
[48-601 using the procedure of [13]. In adition, the assumption da(n-) = 
O.gdcr(c-) is used. The inclusive spectra at non-zero values of y are taken from 
[49,52-56,60-661. The restriction ly[ < 1.5 is used during the fit procedure. 
In addition to the negatively charged particles we also fit the K. production. 
The corresponding data can be found in [67], but because of the pauucity of 
antiproton data at low energies, we considered them as data for protons. 

Apart from the parameters, normalization constants for different experi- 
ments should be determined as well. The data have to be re-calculated using 
a unique scale and then other parameters can be found. Such a procedure is 
rather difficult because sometimes the value of the total cross section used as 
a scale for a given data set is unknown. Therefore, one can use the simpler 
procedure: fit the scale factors for different data sets in a 20% interval. The 
parameters obtained in such a way are presented in Table 2. All G; are in 
mb’l’. The corresponding scale factors are given in Table 3. Their small 
variation is evidence of the quality of the procedure. 

The energy dependence of da/dy at y = 0 is shown in Fig.2 in comparison 
with the data for various reactions. At the highest energies the first term in 
(6) dominates. It gives us the bonus of a prediction for hadron production 
cross sections at the energies of future colliders (Table 4). The calculated 
rapidity distributions in the central region are in good agreement with data 
in a wide energy region, as shown in Fig.3-5. 
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6 Conclusions 

One can see from the analysis presented above that DRD give a good descrip- 
tion of inclusive spectra in the central region with the two-pole approximation 
for the Pomeron singularity, and do not with the one-pole one. The leading 
Pomeron singularity with intercept aF = 1 + A and A = 0.17 is suitable for 
the inclusive K and K-meson yields as well as for otot and the elastic slope. 

It should be stressed that DRD give a universal power law behavior of 
rapidity distributions at y = 0 independently of the particle types. Conse- 
quently, for heavy particle production one can expect 

$+, 21 AQsA 

The overall normalization constant AQ is dependent on the particle type 
and can not be determined in Regge theory. But as was mentioned in the 
introduction, the properties of the Pomeron singularity are connected closely 
to the small-r behavior of the DIS structure function. For the considered 
case one can expect 

f(z) = l/x + P/r’+A, (10) 

where p determines the relative contributions of the leading Pomeron singu- 
larities (P and F). 

Using (10) one can describe the energy behavior of the inclusive cross 
section in the central region for Q-particles. For large z we take the usual 
parametrization f(z) N (1 - 2)” with TX determined by the quark counting 
rules. The result is presented in Fig.6. It would be interesting to verify 
the pure power law in the high energy region, e.g. at Tevatron and UNK 
colliders. 

The authors are sincerely grateful to Alan White and William Bardeen 
for helpful comments. One of us, A.K.L., would like to thank the Fermilab 
Theoretical Physics Departament for the hospitality shown during his recent 
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Table 1 : Elastic amplitude parameters 

GF GP GR GR 
0.69 f .07 1.55 f .ll 2.50 f .76 5.86 f .95 

bF b bR 
3.97 f.53 3.06 f .80 1.73 i .32 

"F aP aR 
0.25 0.25 1.00 

AF AP AR 
0.17 0.00 -0.5 

Table 2 : Double-reggeon amplitude parameters 

c- K. 
GF 0.69 0.69 
GP 1.55 1.55 

GR 0.54 f 0.02 0.53 f .04 

GR 0.24 f 0.02 0.46 f .14 

AFF 13.57 zt 1.43 1.76 f .36 

AFP -9.66 3~ 1.08 -1.33 AC.33 

AFR -48.515 3.15 -5.51f.27 

APP 6.67 I'C 1.00 0.53 f .02 

APR 16.11 + 2.81 2.35 f .24 

ARR -72.9 z!z 7.46 -5.95 f.70 
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Table 3 : Normalization coefficients 

Ref. Norm. Ref. Norm. 
p+p+c-x p+p+c-X 

49 1.0022 f .018 65 0.8005 f .035 
49 1.0705 f .020 60 0.9625 f .017 
52 1.0544 f ,017 61 0.9825 f .023 
53 0.9402 f .021 62 1.0205 f .020 
54 1.0987 f .021 62 1.0377 f .023 
54 0.9929 f .017 66 0.9866 f .018 
56 1.0284 f .015 K.-production 
60 0.9194 zk .014 68 1.0371 f .078 
64 0.8279 zt .019 69 0.8000 zt .248 

Table 4 : Calculated production cross sections da/dy at y = 0 

1.8 TeV 6 TeV 18 TeV 40 TeV 
FNAL UNK LHC ssc 

a(~-),& 115+12 173f 19 251f26 33Ozl135 
a(K.j, mb 11 zt3 17 f 5 24 f 7 31 f 10 
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Fig. 1. Double reggeon diagram 
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